

Department of Computer Science Southern Illinois University Carbondale

CS 491/531 SECURITY IN CYBER-PHYSICAL SYSTEMS

Lecture 10: Industrial Network Protocols

DR. ABDULLAH AYDEGER

LOCATION: ENGINEERING A 409F

EMAIL: AYDEGER@CS.SIU.EDU

Outline

Etnernet/IP

Profibus

EtherCat

Recall: Inter Control Center Protocol (ICCP)

Also known as TASE.2 or IEC 60870-6

Designed for communication between control centers within the energy industry

 Bidirectional Wide Area Network (WAN) communication between a utility control center and other control centers; power plants, substations, and even other utilities

Why is it required?

- To provide standardization for different entities managing regional utilities
- <u>Vendor interoperability over any network</u>

Recall: OPC Characteristics

Primary function is to interconnect other distributed control systems with Windows

hosts

EtherNet/IP

Uses standard Ethernet frames (ethertype 0x80E1) in conjunction with the Common Industrial Protocol (CIP)

• EtherNet/IP is a member of a family of networks that implements <u>CIP at its upper layers</u>

Typically client/server

• "implicit" mode is supported to handle real-time requirements

Implicit mode uses connectionless transport—specifically the <u>User Datagram Protocol</u> (UDP) and multicast transmissions

• To minimize latency and jitter

Common Industrial Protocol (CIP)

Object models to define the various qualities of a device

- Required Objects: define attributes such as <u>device identifiers</u>, routing identifiers
 - Other attributes of a device such as the <u>manufacturer</u>, serial number, date of manufacture, etc.
- Application Objects: define <u>input and output profiles</u> for devices
- Vendor-specific Objects: enable vendors to add <u>proprietary objects</u> to a device

Objects (other than vendor-specific objects) are <u>standardized</u> by device type and function,

• To facilitate interoperability

CIP

Required Objects provide a common and complete set of identifying values

Application Objects contain a common and complete suite of services for control, configuration, and data collection

<u>Media-independent</u> protocol that is supported by hundreds of vendors around the world

- CIP provides users with a unified communication architecture throughout the manufacturing enterprise
- Media independence comes the ability to choose the CIP Network best suited for each application
 - One of these possible choices is EtherNet/IP, which adapts CIP to Ethernet technology

CIP Protocol Stack

For EtherNet/IP:

- Data Link Layer: Ethernet
- Network Layer: IP
- Transport Layer: TCP or UDP

CIP Motion™ Profiles	Motor Control Profiles	Transducer Profiles	I/O Profiles	Other Profiles	Semiconductor Profiles	CIP Safety™ Profiles	Commo	
Object Library (Communications, Applications, Time Synchronization) Safety Object Library								
Data Management Services Safety Services Explicit and I/O Messages and Messages								
Originator Services for Modbus@ Device Integration Connecting Management, Routing								
TCP/UDP		CompoNet		ControlNet Network and Transport		viceNet	Netv	
Ne Internet Protocol		twork and Trai	nsport Netwo			Network and Iransport		
Etherr CSMA/	net 'CD	CompoNet Time Slot		ControlNet CTDMA	CAN CSMA/NBA		tations of	
Ethern Physical	net Layer	CompoNet Physical Lay	er P	ControlNet hysical Layer	DeviceNet Physical Layer		CIP	
EtherNet/IP™		CompoNet	тм Со	ontrolNet™	Devi	ceNet™	-	

Transport Layer of EtherNet/IP

For real-time data transfer, EtherNet/IP also employs UDP over IP to transport messages that contain time-critical control data

• Implicit (I/O data) connections

TCP/IP is used in EtherNet/IP to send CIP explicit messages, which are used to perform client-server type transactions between nodes

Ethernet/IP Advantages

Complete producer-consumer services

• Simultaneously and seamlessly control, configure and collect data

Compatible with standard Internet protocols

EtherNet/IP network infrastructure can accommodate a virtually unlimited number of point-to-point nodes

- Can also support linear and ring topologies providing users
 - Accommodate user current requirements while enabling cost-effective expansion in the future

Security Concerns of EtherNet/IP

Real-time Ethernet protocol, and as such it is susceptible to any of the <u>vulnerabilities of</u> <u>Ethernet</u>

The CIP does not define any explicit or implicit mechanisms for security

• Never designed as a secure communications transport

CIP Security

Authentication of the endpoints:

- Ensuring that the target and originator are both trusted entities
- End point authentication is accomplished using <u>digital certificates or pre-shared keys</u>

Message integrity and authentication:

- Ensuring that the <u>message</u> was sent by the trusted endpoint and was <u>not modified in transit</u>
- Message integrity is accomplished via <u>TLS</u> and authentication via Hash Message Authentication Codes (HMAC)

Message confidentiality:

- Optional capability to <u>encrypt the communications</u>,
 - Provided by the encryption algorithm that is negotiated via the <u>TLS (transport layer security) handshake</u>

EtherNet/IP Resources

https://www.odva.org/wp-content/uploads/2020/05/PUB00138R6-Tech-Series-EtherNetIP.pdf

https://www.rumsey.com/cip-security-how-does-it-work

https://ir.rockwellautomation.com/press-releases/press-releases-details/2018/Rockwell-Automation-Introduces-First-Industrial-Control-Devices-to-Support-CIP-Security/default.aspx

Profibus (Process fieldbus)

Initially designed to allow communication from PLC to host computer

A digital network responsible for providing the communication between the field sensors and the control system or the controllers

- First in factory automation industries,
 - Then process industries, manufacturing, etc.

Via a single bus cable, PROFIBUS links controller or control systems with decentralized field devices (sensors and actuators) on the field level

Profibus Characteristics

Master/Slave protocol that supports multiple master nodes through the use of token sharing

- When a master has control of the token, it can communicate with its slaves
 - Each slave is configured to respond to a single master

Profibus Variants

Profibus-DP (Decentralized Periphery)

- DP-V0, DP-V1, and DP-V2
- In V2, slaves can initiate communications to the master or to other slaves under certain conditions.
 - Typically, a master Profibus node is a PLC or RTU, and a slave is sensor, motor, or some other control system device

Profibus-PA (Process Automation)

Profibus-FMS (Fieldbus Messaging System): Outdated

Three profiles for Profibus communication: asynchronous, synchronous, and via Ethernet

• Profibus over Ethernet is also called <u>Profinet</u>

Profinet

Profibus vs. Profinet

	PROFIBUS	PROFINET	
organization	PI		
application profiles	same		
concepts	Engineering, GS	SDs	
physical layer	RS-485	Ethernet	
speed	12Mbit/s	1Gbit/s or 100Mbit/s	
telegram	244 bytes	1440 bytes (cyclic)^	
address space	126	unlimited	
technology	master/slave	provider/consumer	
connectivity	PA + others*	many buses	
wireless	possible*	IEEE 802.11, 15.1	
motion	32 axes	>150 axes	
machine-to-machine	No	Yes	
vertical integration	No	Yes	
^with multiple telegrams: up	to 2 ³² -65 (acyclic)		
*not in spec, but solutions a	vailable		

Case studies of Profibus

https://www.profibus.com/index.php?id=5013

EtherCAT

Real-time Ethernet fieldbus protocol

To maximize the efficiency of distributed process data communications over Ethernet frames

- EtherCAT communicates large amounts of distributed process data with just one Ethernet frame, so that typically only <u>one or two Ethernet frames</u> are required for a complete cycle
- Slaves pass the frame(s) to other slaves in sequence, appending its appropriate response, until the last slave returns the completed response frame back

IEC-Standards (IEC 61158 and IEC 61784)

EtherCAT Characteristics

The EtherCAT master sends a telegram that passes through each node.

- Each EtherCAT slave device reads the data addressed to it "on the fly", and inserts its data in the frame as the frame is moving downstream
- The frame is delayed only by hardware propagation delay times
- The last node in a segment (or drop line) detects an open port and sends the message back to the master using Ethernet technology's full duplex feature

EtherCAT Characteristics

The EtherCAT master is the only node within a segment allowed to actively send an EtherCAT frame;

- All other nodes merely forward frames downstream.
- This concept prevents unpredictable delays and guarantees real-time capabilities.

Ethernet header		ECAT	ECAT EtherCAT telegram				Ethernet		
DA	SA	Туре	Frame HDR	Datagram 1	Datagram 2		Datagram n	Pad.	FCS
(6)	(6)	(2/4)	(2)	(10+n+2)	(10+m+2)		(10+k+2)	(032)	(4)
Et	hertype 0x8	88A4							

EtherCAT Characteristics

The master uses a standard Ethernet Media Access Controller (MAC) without an additional communication processor.

- Allows a master to be implemented on any hardware platform with available Ethernet port,
 - Regardless of which real-time operating system or application software is used.
- EtherCAT Slave devices use an EtherCAT Slave Controller to process frames on the fly and entirely in hardware, making network performance predictable and independent of the individual slave device implementation

EtherCat in Ethernet Frame

Ethernet Frame: max. 1514 Byte						
Ethernet Header			Etherr	FCS		
6 Byte	6 Byte	2 Byte			4 Byte	
Destination	Source	EtherType	EtherC	FCS		
1	E	therType 88A4h	2 Byte	48 -1498 Byte		
Destination	Source	EtherType	Header	Datagrams	FCS	
				1	1	

EtherCAT P

EtherCAT P (P = power) is an addition to EtherCAT protocol standard

It enables not only the transmission of communication data, but also the peripheral voltage via a single, standard four-wire Ethernet cable.

EtherCAT P: data and power via one cable

Have you heard Powerline Ethernet?

Ethercat Resources

Most of the resources require membership

https://www.ethercat.org/en/technology.html